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The problem of steady laminar mixed convection boundary layer flow past an isothermal horizontal
circular cylinder placed in a viscous and incompressible fluid of temperature-dependent viscosity is
theoretically considered in this paper. The partial differential equations governing the flow and heat
transfer are shown to be non-similar. Full numerical solutions of these governing equations are obtained
using an implicit finite-difference scheme known as the Keller-box method. The solutions are obtained
for various values of the Prandtl number Pr, the mixed convection parameter l and the viscosity/
temperature parameter qr. The obtained results show that the flow and heat transfer characteristics are
significantly influenced by these parameters.

� 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

Mixed or combined convective heat transfer in boundary layer
flow represents an important problem, which is frequently
encountered in many industrial and technical processes including
solar central receivers exposed to winds, electronic devices cooled
by fans, nuclear reactors cooled during emergency shutdown, heat
exchangers placed in a low-velocity environment, etc. [1]. Further,
the typical physical example of variable fluid properties can be
found in the oil cooling of the electronic equipment [2]. In this kind
of convective flows, the free and forced convection effects are of
comparable magnitude [3]. It is very well-known that in several
practical applications, there exist significant temperature differ-
ences between the surface of the hot body and the free stream.
These temperature differences cause density gradients in the fluid
medium and in the presence of a gravitational body force, free
convection effects become important. When natural or mixed
convection heat transfer takes place under conditions where there
are large temperature differences within the fluid, it is necessary
(for accuracy) to consider the effects of variable fluid properties.
The typical physical example can be found in the oil cooling of the
electronic equipment.
þ603 89254519.
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Studies on mixed convection boundary layer flow past a hori-
zontal circular cylinder have been conducted previously by several
researchers. It appears that Sparrow and Lee [4] were the first to
study the problem of mixed convection boundary layer flow about
a horizontal circular cylinder. Later, Merkin [5] has studied the
problem of mixed convection from a horizontal circular cylinder
and he solved it based on the Crank–Nicolson method, using
Newton–Raphson method along with Choleski decomposition
technique. Further, Nazar et al. [6–9] have solved similar problems
for Newtonian as well as for micropolar fluids and they have
considered the cases of constant wall temperature and constant
wall heat flux.

An interesting macroscopic physical phenomenon in fluid
mechanics is the variation of viscosity with temperature. For many
liquids, among them petroleum oils, glycerine, silicone fluid and
some molten salts, the variation of absolute viscosity with
temperature is often much greater than that of the other properties
[2]. In all of the above mentioned studies on mixed convection
boundary layer flow past a horizontal circular cylinder, the fluid
viscosity is treated as a constant. However, it is well-known that the
changes of this physical property may relate to the temperature. For
example, the viscosity of water decreases by about 58% when the
temperature increases from 10 �C (m¼ 1.31�10�3 kg m�1s�1) to
50 �C (m¼ 5.48� 10�4 kg m�1s�1). In order to make good predic-
tions of the flow behaviour, it is important to take into account this
variation of viscosity. It has been shown by Gary et al. [10] and

mailto:rmn72my@yahoo.com
www.sciencedirect.com/science/journal/12900729
http://www.elsevier.com/locate/ijts


Nomenclature

a radius of the cylinder
Cf skin friction coefficient
f non-dimensional stream function
g acceleration due to gravity
Gr Grashof number, Gr¼ gbDTa3/n2

k thermal conductivity
Nu Nusselt number
Pr Prandtl number
qw heat flux from the cylinder
Re Reynolds number, Re¼UNa/n
T local fluid temperature
Tr reference temperature
Tw cylinder temperature
TN ambient temperature
au, v non-dimensional velocity components along the x –

and y – directions, respectively
ue(x) non-dimensional velocity outside boundary layer
UN free stream velocity
x, y non-dimensional Cartesian coordinates along the

surface of the cylinder and normal to it, respectively
xs boundary layer separation point

Greek symbols
a thermal diffusivity
b thermal expansion coefficient
g thermal property of the fluid
q non-dimensional temperature
qr viscosity/temperature parameter
l mixed convection parameter
n kinematic viscosity, n¼ m/r
nN constant kinematic viscosity of the ambient fluid
m dynamic viscosity
mN constant dynamic viscosity of the ambient fluid
r fluid density
sw wall shear stress
j stream function

Subscripts
w condition at the surface of the cylinder
N ambient/free stream condition

Superscripts
0 differentiation with respect to y
– dimensional variables
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Mehta and Sood [11] that when variable viscosity is taken into
account, the flow characteristics may be substantially changed
compared to the constant viscosity case. Lings and Dybbs [12]
studied the forced convection with variable viscosity over flat plate
in a porous medium. Kafoussias and Williams [1] and Kafoussias
et al. [13] have investigated the effect of temperature-dependent
viscosity on mixed convection boundary layer flow past a vertical
isothermal flat plate. Hossain et al. [14,15] studied the natural or
free convection flow about a vertical cone and vertical wavy
surfaces, respectively, with the viscosity inversely proportional to
the linear function of temperature. Further, Molla et al. [16] have
considered a problem of natural convection flow about an
isothermal horizontal circular cylinder with temperature-depen-
dent viscosity. Recently, Ahmad et al. [17] have studied the effect of
temperature-dependent viscosity on free convection over
isothermal cylinders of elliptic cross section. Finally, we mention to
this end the interesting paper by Ali [18] where he considered the
problem of the effect of variable viscosity on mixed convection heat
transfer along a vertical moving surface.

Therefore, in order to get more accurate information about the
flow and temperature characteristics, the aim of this paper is to
study the problem of steady laminar mixed convection boundary
layer flow past an isothermal horizontal circular cylinder with the
effect of temperature-dependent viscosity immersed in a viscous
fluid for both assisting (heated cylinder) and opposing flow (cooled
cylinder) cases. The partial and ordinary differential equations
governing the flow and temperature fields are solved numerically
using an efficient implicit finite-difference scheme known as the
Keller-box method (see [19]). The results obtained are compared
with those reported by Merkin [5] for a constant viscosity when the
Prandtl number is unity, namely Pr¼ 1 and it is found that the
results are in very good agreement. It should be mentioned that
the method used by Merkin [5] consists in replacing derivatives of
the partial differential equations in the direction by differences and
all other quantities averaged. The two non-linear ordinary differ-
ential equations which result were solved by writing them in finite-
difference form and solving the non-linear algebraic equations
iteratively by a Newton–Raphson process. The linear algebraic
equations arising in the iterative process were solved by Choleski
decomposition technique. We believe that the present results are
more accurate than those which use the usual assumption of
constant properties [20].

2. Mathematical formulation

We consider a problem of mixed convection boundary layer flow
past a horizontal circular cylinder of radius a placed in a viscous and
incompressible fluid of temperature-dependent viscosity. It is also
assumed that the cylinder is kept at the uniform temperature Tw,
while the ambient fluid has the constant temperature TN, where
Tw> TN (heated cylinder) corresponds to an assisting flow (free
stream and buoyancy forces are in the same direction where the
buoyancy forces will assist the fluid to accelerate in the boundary
layer) and Tw< TN (cooled cylinder) corresponds to an opposing
flow (free stream and buoyancy forces are in the opposite directions
where the buoyancy forces will retard the fluid flows in the
boundary layer). Further, following Merkin [5] it is assumed that the
characteristic velocity is (1/2)UN. Under these assumptions along
with the Boussinesq and boundary layer approximations, the basic
boundary layer equations of this problem are:

vu
vx
þ vv

vy
¼ 0; (1)

r

�
u

vu
vx
þ v

vu
vy

�
¼ rueðxÞ

dueðxÞ
dx

þ v

vy

�
m

vu
vy

�

þ rgbðT � TNÞsin
�x

a

�
; (2)

u
vT
vx
þ v

vT
vy
¼ a

v2T
vy2 ; (3)

subject to the boundary conditions

u ¼ v ¼ 0; T ¼ Tw at y ¼ 0;

u/ueðxÞ; T/TN as y/N; ð4Þ

where x is the coordinate measured along the surface of the
cylinder starting from the lower stagnation point ðxz0Þ and y is the
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distance measured normal to it, ðu; vÞ are the velocity components
along the ðx; yÞ axes, T is the local fluid temperature and the other
physical quantities are defined in the Nomenclature. Further, ðx=aÞ
is the angle of the cylinder as shown in Fig. 1.

We assume that the dynamic viscosity m has the form proposed
by Lings and Dybbs [12]

m ¼ mN

1þ gðT � TNÞ
; (5)

so that the viscosity is an inverse linear function of temperature T.
Here mN is a constant dynamic viscosity of the ambient fluid and g

is a thermal property of the fluid, which is a constant. Equations
(1)–(3) can be non-dimensionalised using the following new
variables:

x ¼ x=a; y ¼ Re1=2ðy=aÞ;u ¼ u=UN; v ¼ Re1=2ðv=UNÞ;
q ¼ ðT � TNÞ=ðTw � TNÞ; ueðxÞ ¼ ueðxÞ=UN; (6)

where (Re¼UNa/n) is the Reynolds number.
The non-dimensional temperature q can also be written as

q ¼ T � Tr

Tw � TN
þ qr ; (7)

where Tr is a constant and its value depends on the reference state
and the constant g. Air and water are the most common fluids
involved in engineering applications. Therefore, Kafoussias and
Williams [1] have shown the appropriateness of Eq. (5) by giving
the correlations between viscosity and temperature for air and
water as follows:

for air,

1
m
¼ �123:2ðT � 742:6Þ; (8)

based on TN¼ 293K(20 �C) and for water,

1
m
¼ 29:83ðT � 258:6Þ; (9)

based on TN¼ 288K(15 �C).
The viscosity/temperature parameter qr in Eq. (7) is given by

qr ¼
Tr � TN

Tw � TN
¼ � 1

gðTw � TNÞ
¼ constant; (10)

and its value is determined by the viscosity/temperature charac-
teristics of the fluid and the operating temperature difference
DT¼ Tw� TN. It is worth mentioning that in the case when the
temperature difference DT is positive, qr must physically be >1 for
o x
y

/x a

a

wT

g

(1 / 2) ,U T∞ ∞

Fig. 1. Physical model and coordinate system.
gases and <0 for liquids. However, the opposite is true if DT is
negative, where qr must physically be >1 for liquids and <0 for
gases since g has the opposite sign in each of these cases and vice
versa [21]. Using (5)–(7), the basic boundary layer equations (1)–(3)
can be written in non-dimensional form as

vu
vx
þ vv

vy
¼ 0; (11)

u
vu
vx
þ v

vu
vy
¼ ueðxÞ

dueðxÞ
dx

þ qr

ðq� qrÞ2
vq

vy
vu
vy
þ qr

ðqr � qÞ
v2u
vy2

þ lqsin x; (12)

u
vq

vx
þ v

vq

vy
¼ 1

Pr
v2q

vy2; (13)

and the boundary conditions (4) become:

u ¼ v ¼ 0; q ¼ 1 at y ¼ 0; u/ueðxÞ; q/0 as y/N; (14)

where Pr is the Prandtl number and l is the mixed convection
parameter which describes the relative importance of free
convection to forced convection and is defined as

l ¼ Gr
Re2; (15)

and (Gr¼ gbDTa3/n2) is the Grashof number. It should be mentioned
that l> 0 corresponds to assisting flow, l< 0 corresponds to
opposing flow and l¼ 0 corresponds to forced convection flow.

3. Solution procedure

We take ue(x)¼ sin x [5] where ue(x) is the potential flow (outer
flow) for a circular cylinder in the present dimensionless variables.
In order to solve Eqs. (11)–(13), subject to the boundary conditions
(14), we assume the following variables:

j ¼ xf ðx; yÞ; q ¼ qðx; yÞ; (16)

where j is the stream function defined in the usual way as:

u ¼ vj

vy
; v ¼ �vj

vx
: (17)

Substituting (16) and (17) into Eqs. (12) and (13), we get, after some
algebra, the resulting equations:
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� 1
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; (18)

1
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�
; (19)

subject to the boundary conditions (14) which become:

f ¼ vf
vy
¼ 0; q ¼ 1 at y ¼ 0;

vf
vy

/
sinx

x
; q/0 as y/N: ð20Þ
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Fig. 2. The skin friction coefficient Cf for various values of l when Pr¼ 1 (case of
constant viscosity).
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Fig. 4. The skin friction coefficient Cf for various values of qr when Pr¼ 0.7 and l¼ 0.5
(assisting flow), l¼�1.0 (opposing flow).
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The quantities of interest are the skin friction coefficient Cf and the
Nusselt number Nu which are defined as

Cf ¼
aRe�1=2

mNUN
sw; Nu ¼ aRe�1=2

kðTw � TNÞ
qw; (21)

where sw and qw are given by

sw ¼
�

m
vu
vy

�
y¼0

; qw ¼ �k
�

vT
vy

�
y¼0

: (22)

with k being the thermal conductivity of the fluid. Using the non-
dimensional variables (6) and (22) into Eq. (21), we get

Cf ¼
xqr

qr � 1
v2f
vy2
ðx;0Þ; Nu ¼ �vq

vy
ðx;0Þ: (23)

It can be seen that at the lower stagnation point of the cylinder, i.e.
(x z 0), Eqs. (18) and (19) reduce to the following ordinary differ-
ential equations:

f 000 � q� qr

qr
ff 00 þ q� qr

qr
f 02 � 1

ðq� qrÞ
q0f 00

� q� qr

qr
� lðq� qrÞ

q

qr
¼ 0; ð24Þ

1
Pr

q00 þ f q0 ¼ 0; (25)

subject to the boundary conditions
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Fig. 3. The Nusselt number Nu for various values of l when Pr¼ 1 (case of constant
viscosity).
f ð0Þ ¼ f 0ð0Þ ¼ 0; qð0Þ ¼ 1; f 0ðNÞ ¼ 1; qðNÞ ¼ 0; (26)

where primes denote differentiation with respect to y.
We notice from the paper by Kafoussias and Williams [1] that

for physically realizable situation, qr cannot take values between
0 and 1, and as mentioned before, the constraint qr> 1 is for gases
and qr< 0 is for liquids when l is positive and vice versa. It is also
important to point out that when jqrj is large ðjqrj/NÞ, the
viscosity variation in the boundary layer is negligible and Eqs. (18),
(19), (24) and (25) reduce to those found by Merkin [5]. However, as
qr> 1 is for gases or qr< 0 is for liquids, the viscosity variation
becomes increasingly significant.

4. Results and discussion

The two sets of Eqs. (18), (19), (24) and (25) subject to the
boundary conditions (20) and (26), respectively, have been solved
numerically using an implicit finite-difference scheme known as
the Keller-box method along with the Newton’s linearization
technique as described by Cebeci and Bradshaw [19]. The solution is
obtained in the following four steps:

1. Reduce Eqs. (18), (19), (24) and (25) to a first-order system.
2. Write the difference equations using central differences.
3. Linearize the resulting algebraic equations by Newton’s

method and write them in matrix-vector form.
4. Solve the linear system by the block-tridiagonal-elimination

technique.
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(assisting flow), l¼�1.0 (opposing flow).



-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.5 1.0 1.5 2.0 2.5
x

Cf

λ=0.5
λ=−1.0

Pr=7

r=−1,−2,−4,−8θ

θr=10,8,4,2

Fig. 6. The skin friction coefficient Cf for various values of qr when Pr¼ 7 and l¼ 0.5
(assisting flow), l¼�1.0 (opposing flow).

1.4

1.6

1.8

2.0

2.2

2.4

-0.50 -0.25 0.00 0.25 0.50

xs

|  r|=2

|  r|→∞
|  r|=4

Pr=0.7

 

θ
θ
θ

Fig. 8. Variation of the separation point xs with l for Pr¼ 0.7 when jqrj ¼ 2, 4 and
jqrj/ N (constant viscosity).

S. Ahmad et al. / International Journal of Thermal Sciences 48 (2009) 1943–1948 1947
The numerical solution starts at the lower stagnation point of
the cylinder, x z 0, with the initial profiles as given by Eqs. (24) and
(25) subject to the boundary conditions (26) and proceed around
the cylinder up to the separation point xs. In order to identify the
optimum step size, the value of Dy¼ 0.02 was found to be satis-
factory for the calculations of f and q with a convergence criterion of
10�5 which gives about four decimal places accuracy (see [19]). The
step size of x, Dx and the edge of the boundary layer, yN are
adjusted for different range of parameters. Numerical results for the
skin friction coefficient Cf and the Nusselt number Nu have been
obtained for various values of Prandtl number, Pr¼ 1, 0.7 (air) and 7
(water) with various values of the mixed convection parameter l

and the viscosity/temperature parameter qr at different positions of
x around the surface of the cylinder.

It is worth mentioning that the numerical scheme used in the
present study, namely the Keller-box method, has been proven to
be unconditionally stable and it is also the most flexible of the
common method, being easily adaptable to solving equations of any
order [19]. On the other hand, in order to verify the accuracy of the
present method, the values of the skin friction coefficient Cf and the
Nusselt number Nu for Pr¼ 1 when l¼�1.5,�1, 0, 1 and 5 are
compared with those reported by Merkin [5] in Figs. 2 and 3 by
taking jqrj/ N (constant viscosity) in this study. These results are
found to be in good agreement. The results also show that the
separation of boundary layer is delayed as the mixed convection
parameter l increases. It is also found that the boundary layer does
not separate (xs¼ p) when l� 1.

Numerical results for the skin friction coefficient and Nusselt
number for Pr¼ 0.7 at different positions x with various values of qr
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Fig. 7. The Nusselt number Nu for various values of qr when Pr¼ 7 and l¼ 0.5
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for both assisting (l¼ 0.5) and opposing (l¼�1.0) flow cases are
presented in Figs. 4 and 5, respectively. It is seen from Fig. 4 that at
each point of x, the skin friction coefficient increases as qr decreases
for the opposing flow but for the assisting flow, this result only valid
to a certain value of x. Meanwhile, Fig. 5 shows that at each point of
x, the Nusselt number increases as qr increases, i.e. the increasing of
qr promotes the heat transfer for the assisting flow but for the
opposing flow, this result only valid to a certain value of x.

Figs. 6 and 7 show the numerical results for the skin friction
coefficient and Nusselt number, respectively, for Pr¼ 7 at different
positions x with various values of qr for both assisting (l¼ 0.5) and
opposing (l¼�1.0) flow cases. It is noticed from Fig. 6 that at each
point of x, the skin friction coefficient increases as qr decreases for
both assisting and opposing flows cases and this result only valid to
a certain value of x. Further, Fig. 7 shows that for both assisting and
opposing flows cases, the Nusselt number increases as qr increases
at each point of x.

Further, Figs. 4 and 6 show that for each qr, there exists
a maximum value of skin friction coefficient for both assisting and
opposing flows cases. It is observed that the point of x where the
skin friction is maximum for the assisting flow is greater than the
opposing flow, for each value of Pr. It can also be seen from Figs. 4
and 6 that the skin friction coefficient for air (Pr¼ 0.7) is greater
than water (Pr¼ 7) when the flow is assisting. On the other hand,
the skin friction coefficient for water is greater than air when the
flow is opposing. Figs. 5 and 7 show that for all values of qr, the
Nusselt number decreases as x increases up to the separation point
xs for both assisting and opposing flows cases. Those figures also
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N (constant viscosity).
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show that the Nusselt number for water is greater than air for both
assisting and opposing flows. It can be seen also from Figs. 4–7 that
the skin friction coefficient and Nusselt number for the assisting
flow are greater than the opposing flow for each value of Pr.

Numerical results for the separation point xs when Pr¼ 0.7 and 7
for both assisting and opposing flows cases are presented in Figs. 8
and 9. These two figures show that the boundary layer separation is
delayed (i.e. the position of the separation point increases along the
surface of the cylinder) as l increases for each value of considered
jqrj. It is worth mentioning that these results are also coinciding
with those found by Merkin [5] for Pr¼ 1 (as shown in Fig. 10). Fig. 8
also shows that for Pr¼ 0.7, increasing jqrj delays the boundary
layer separation and this happens only when the flow is assisted.
On the other hand, we can see in Fig. 9 that for Pr¼ 7, increasing jqrj
also delays the boundary layer separation but only for the opposing
flow case. Finally, it should be mentioned that in a similar way to
the case of constant viscosity (jqrj/ N), the present numerical
results show that in those cases when the boundary layer separates,
Cf / 0 and Nu / Nus(s0) as x / xs in a singular way as was found
by Merkin [5].

5. Conclusions

A numerical study is performed for the problem of steady
laminar mixed convection boundary layer flow past an isothermal
horizontal circular cylinder placed in a viscous and incompressible
fluid of temperature-dependent viscosity. Calculations are carried
out for various values of the Prandtl number Pr, the mixed
convection parameter l and the viscosity/temperature parameter
qr. The obtained results show that the flow and thermal charac-
teristics is significantly influenced by these parameters. Therefore,
it is important to consider the effect of temperature-dependent
viscosity especially when the viscosity of a fluid is sensitive to
temperature variations, otherwise considerable errors may occur in
the characteristics of the heat transfer process.

Acknowledgement

The authors wish to express their very sincere thanks to the
reviewers for the valuable comments and suggestions. This work is
supported by the Research University Grant Scheme (RUGS) from
Universiti Putra Malaysia.

References

[1] N.G. Kafoussias, E.W. Williams, The effect of temperature-dependent viscosity
on free-forced convective laminar boundary layer flow past a vertical
isothermal flat plate, Acta Mech. 110 (1995) 123–137.

[2] J.-Y. Jang, J.C. Mollendorf, The stability of a vertical natural convection
boundary layer with temperature dependent viscosity, Int. J. Eng. Sci. 26
(1988) 1–12.

[3] I. Pop, D.B. Ingham, Convective Heat Transfer: Mathematical and Computa-
tional Modeling in Viscous Fluids and Porous Media, Pergamon, Oxford, 2001.

[4] E.M. Sparrow, L. Lee, Analysis of mixed convection about a horizontal cylinder,
Int. J. Heat Mass Transfer 19 (1976) 229–232.

[5] J.H. Merkin, Mixed convection from a horizontal circular cylinder, Int. J. Heat
Mass Transfer 20 (1977) 73–77.

[6] R. Nazar, N. Amin, I. Pop, Mixed convection boundary-layer flow from a hori-
zontal circular cylinder with a constant surface heat flux, Int. J. Appl. Mech.
Eng. 7 (2002) 409–431.

[7] R. Nazar, N. Amin, I. Pop, Mixed convection boundary layer flow from a hori-
zontal circular cylinder in micropolar fluids: case of constant wall tempera-
ture, Int. J. Numer. Meth. Heat Fluid Flow 13 (2003) 86–109.

[8] R. Nazar, N. Amin, I. Pop, Mixed convection boundary-layer flow from a hori-
zontal circular cylinder with a constant surface heat flux, Heat Mass Transfer
40 (2004) 219–227.

[9] R. Nazar, N. Amin, I. Pop, Mixed convection boundary layer flow from a hori-
zontal circular cylinder in micropolar fluids: case of constant wall heat flux,
Int. J. Fluid Mech. Res. 31 (2004) 143–159.

[10] J. Gary, D.R. Kassoy, H. Tadjeran, A. Zebib, The effects of significant viscosity
variation on convective heat transport in water-saturated porous media, J.
Fluid Mech. 117 (1982) 233–249.

[11] K.N. Mehta, S. Sood, Transient free convection flow with temperature
dependent viscosity in a fluid saturated porous medium, Int. J. Eng. Sci. 30
(1992) 1083–1087.

[12] J.X. Lings, A. Dybbs, Forced Convection Over a Flat Plate Submersed in a Porous
Medium: Variable Viscosity Case, Paper 87-WA/HT-23, ASME, New York, 1987.

[13] N.G. Kafoussias, D.A.S. Rees, J.E. Daskalakis, Numerical study of the combined
free-forced convective laminar boundary layer flow past a vertical isothermal
flat plate with temperature-dependent viscosity, Acta Mech. 127 (1998) 39–50.

[14] M.A. Hossain, M.S. Munir, I. Pop, Natural convection flow of viscous fluid with
viscosity inversely proportional to linear function of temperature from
a vertical cone, Int. J. Therm. Sci. 40 (2001) 366–371.

[15] M.A. Hossain, S. Kabir, D.A.S. Rees, Natural convection of fluid with tempera-
ture dependent viscosity from heated vertical wavy surface, J. Appl. Math.
Phys. (ZAMP) 53 (2002) 48–52.

[16] M.M. Molla, M.A. Hossain, R.S.R. Gorla, Natural convection flow from an
isothermal horizontal circular cylinder with temperature dependent viscosity,
Heat Mass Transfer 41 (2005) 594–598.

[17] S. Ahmad, N.M. Arifin, R. Nazar, I. Pop, Effect of temperature-dependent
viscosity on free convection over cylinders of elliptic cross section, in:
Proceedings of the 13th International Heat Transfer Conference, Sydney,
Australia, 13–18 August, 2006, Paper No. NCV-29, pp. 1–11.

[18] M.E. Ali, The effect of variable viscosity on mixed convection heat transfer
along a vertical moving surface, Int. J. Therm. Sci. 45 (2006) 60–69.

[19] T. Cebeci, P. Bradshaw, Physical and Computational Aspects of Convective Heat
Transfer, Springer, New York, 1988.

[20] A. Pantokratoras, The Falkner-Skan flow with constant wall temperature and
variable viscosity, Int. J. Therm. Sci. 45 (2006) 378–389.

[21] E.M.A. Elbashbeshy, M.A.A. Bazid, The effect of temperature dependent
viscosity on heat transfer over a continuous moving surface, J. Phys. D: Appl.
Phys. 33 (2000) 2716–2721.


	Mixed convection boundary layer flow past an isothermal horizontal circular cylinder with temperature-dependent viscosity
	Introduction
	Mathematical formulation
	Solution procedure
	Results and discussion
	Conclusions
	Acknowledgement
	References


